"Depupylation" of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates.

نویسندگان

  • Kristin E Burns
  • Francisca A Cerda-Maira
  • Tao Wang
  • Huilin Li
  • William R Bishai
  • K Heran Darwin
چکیده

Ubiquitin (Ub) provides the recognition and specificity required to deliver proteins to the eukaryotic proteasome for destruction. Prokaryotic ubiquitin-like protein (Pup) is functionally analogous to Ub in Mycobacterium tuberculosis (Mtb), as it dooms proteins to the Mtb proteasome. Studies suggest that Pup and Ub do not share similar mechanisms of activation and conjugation to target proteins. Dop (deamidase of Pup; Mtb Rv2112c/MT2172) deamidates the C-terminal glutamine of Pup to glutamate, preparing it for ligation to target proteins by proteasome accessory factor A (PafA). While studies have shed light on the conjugation of Pup to proteins, it was not known if Pup could be removed from substrates in a manner analogous to the deconjugation of Ub from eukaryotic proteins. Here, we show that Mycobacteria have a "depupylase" activity provided by Dop. The discovery of a depupylase strengthens the parallels between the Pup- and Ub-tagging systems of prokaryotes and eukaryotes, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway.

Post-translational modification of proteins with prokaryotic ubiquitin-like protein (Pup) is the bacterial equivalent of ubiquitination in eukaryotes. Mycobacterial pupylation is a two-step process in which the carboxy-terminal glutamine of Pup is first deamidated by Dop (deamidase of Pup) before ligation of the generated γ-carboxylate to substrate lysines by the Pup ligase PafA. In this study,...

متن کامل

Activity of the mycobacterial proteasomal ATPase Mpa is reversibly regulated by pupylation.

Pupylation is a bacterial post-translational modification of target proteins on lysine residues with prokaryotic ubiquitin-like protein Pup. Pup-tagged substrates are recognized by a proteasome-interacting ATPase termed Mpa in Mycobacterium tuberculosis. Mpa unfolds pupylated substrates and threads them into the proteasome core particle for degradation. Interestingly, Mpa itself is also a pupyl...

متن کامل

Prokaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates.

Prokaryotic ubiquitin-like protein (Pup) is a posttranslational modifier that targets proteins for degradation by the mycobacterial proteasome. We show that the disordered amino terminus of Pup is required for degradation, while the helical carboxyl terminus mediates its attachment to proteins. Thus, Pup has distinct regions that either interact with pupylation enzymes or initiate proteasomal d...

متن کامل

Posttranslational regulation of coordinated enzyme activities in the Pup-proteasome system.

The proper functioning of any biological system depends on the coordinated activity of its components. Regulation at the genetic level is, in many cases, effective in determining the cellular levels of system components. However, in cases where regulation at the genetic level is insufficient for attaining harmonic system function, posttranslational regulatory mechanisms are often used. Here, we...

متن کامل

The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus.

Mycobacterium tuberculosis, along with other actinobacteria, harbours proteasomes in addition to members of the general bacterial repertoire of degradation complexes. In analogy to ubiquitination in eukaryotes, substrates are tagged for proteasomal degradation with prokaryotic ubiquitin-like protein (Pup) that is recognized by the N-terminal coiled-coil domain of the ATPase Mpa (also called ARC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2010